Petrophysical Techniques; Geology/Geophysics 449
Disclaimer: While every reasonable effort is made to ensure that the information provided is accurate, no guarantees for the currency or accuracy of information are made. It takes several proof readings and rewrites to bring the quiz to an exceptional level. If you find an error, please contact me as soon as possible. Please indicate the question ID-Number or description because server may randomize the questions and answers.
Questions on Petrophysical Log Interpretation will not appear in the following exam. Log questions are published under a separate section.
Go to: Midterm II | Well Log Interpretation
Geology (GLGY 449-UCAL) Midterm I
Congratulations - you have completed Geology (GLGY 449-UCAL) Midterm I.
You scored %%SCORE%% out of %%TOTAL%%.
Your performance has been rated as %%RATING%%
Question 1 |
A | 10 - 40 cm |
B | 0 - 10 cm |
C | 25 - 35 cm |
D | 40 - 50 cm |
E | 15 - 20 cm |
Question 2 |
A | ...the radiation that was not absorbed by the formation. |
B | ...the neutron radiation omitted by the formation nuclei. |
C | ...the radiation omitted by elastic collisions between the neutron and the formation nuclei. |
D | ...the radiation omitted by inelastic collisions between the neutron and the formation nuclei. |
Question 3 |
A | 3.0% |
B | 29% |
C | 35% |
D | 2.9% |
E | 34% |
porosity = (2.80 - 2.25) / (2.80 - 1.20) = 0.34 = 0.34%
Question 4 |
A | Subsurface formation waters as trace substance. |
B | In radioactive natural deposits of uranium as a by product. |
C | Within clay minerals such as illite and smectite. |
D | In stable minerals such as phosphates. |
Question 5 |
A | Gamma rays travel faster than other rays. |
B | Gamma rays are not naturally produced in the subsurface hence removes the uncertainty factor. |
C | Gamma rays are more penetrative than the others. |
D | Gamma rays do not react with any chemical components in the natural world. |
E | Gamma rays produce a much higher energy difference that can be easily measurable by logging tools. |
Question 6 |
A | Dissolution of cemented materials due to high temperature and pressure |
B | Disintegration of minerals |
C | Fracture development |
D | Dissolution of early diagenetic cements |
E | Organic activity |
Question 7 |
A | 15 - 20 cm |
B | 0 - 10 cm |
C | 25 - 30 cm |
D | 40 - 50 cm |
E | 30 - 35 cm |
Question 8 |
A | Formations that naturally produce very high rates of gamma rays hence allowing the artificial gamma rays to be amplified. |
B | Low radioactive formations hence less destructive interference. |
C | Very high density allowing gamma rays to bounce off from atom to atom deep into the formation. |
D | High radioactive formations hence with more constructive interference. |
E | Very low density where fewer gamma rays are absorbed hence increasing the propagation distance. |
Question 9 |
A | Compton scattering |
B | Pair production |
C | Radioactive capture |
D | Natural gamma rays |
E | Gamma ray bouncing effect |
Question 10 |
A | 10 - 15 cm |
B | 40 - 50 cm |
C | 5 - 10 cm |
D | 20 - 30 cm |
E | 60 - 70 cm |
Question 11 |
A | ~ 15% |
B | ~ 5% |
C | ~ 35% |
D | ~ 45% |
E | ~ 20% |
Question 12 |
A | Identification of non-radioactive clays and dolostones. |
B | Primary depth control. |
C | Calculate the bulk porosity of formation. |
D | Calculate the volume of shale to sand ratio. |
E | Analysis of grain volumes and grain characteristics of formation. |
Question 13 |
A | Use high pressured drilling mud. |
B | Use fracking to fracture the formations to increase permeability. |
C | Use larger boreholes and wider cutting tools. |
D | Use horizontal drilling. |
Question 14 |
A | It is dependent on what type of logging tool is used. |
B | It is that of the surface. |
C | It is that of the drilling mud. |
D | It is that of the formation. |
Question 15 |
A | 60 - 70 cm |
B | 40 - 50 cm |
C | 5 -10 cm |
D | 10 - 15 cm |
E | 20 - 30 cm |
Question 16 |
A | The Well-II most likley surrounded by a lithology that poor in porosity and permeability than Well-II; hence the faster mud flow resulted in a large invaded zone. |
B | The Well-I most likely surrounded by a lithology that is very porous and permeable than Well-II; hence faster mudcake build up have lead to smaller invaded zone. |
C | The Well-I most likley surrounded by a lithology that poor in porosity and permeability than Well-II; hence faster mudcake build up have lead to smaller invaded zone. |
D | The Well-II most likely surrounded by a lithology that is very porous and permeable than Well-I; hence the faster mud flow resulted in a large invaded zone. |
Question 17 |
A | Higher formation fluid content allowing gamma rays to penetrate the formation. |
B | Higher radioactivity within the formation allowing gamma rays to interact with minerals within the formation. |
C | Higher formation porosity allowing more gamma rays to penetrate the formation. |
D | Lower formation density resulting fewer gamma rays being absorbed. |
E | Higher formation density resulting more gamma rays being absorbed. |
Question 18 |
A | Density logs |
B | Caliper logs |
C | Gamma ray logs |
D | Neutron logs |
E | Spontaneous potential logs |
F | Spectral gamma ray logs |
Question 19 |
A | Slow mudcake buildup with very shallow mud filtrate. |
B | Fast mudcake buildup with very deep mud filtrate. |
C | It all depends on the type of mud used for the drilling process. |
D | Slow mudcake buildup with very deep mud filtrate. |
E | Fast mudcake buildup with very shallow mud filtrate. |
Question 20 |
A | 30o to 50o Celsius per kilometer of depth. |
B | 20o to 30o Celsius per meter of depth. |
C | 15o to 50o Celsius per kilometer of depth. |
D | 15o to 25o Celsius per kilometer of depth. |
E | 30o to 50o Celsius per meter of depth. |
F | 20o to 30o Celsius per kilometer of depth. |
Question 21 |
A | It can help determine the type of drill bit to use to cut into the formations. |
B | A high log value of density indicates a very good reservoirs. |
C | The density can be used to calculate porosity of formations. |
D | It provides an overview of the lithological formations (for example, quartz from calcite). |
E | The density logs can be used to resolve extremely thin formations and transitional zones. |
Question 22 |
A | Carbonates |
B | Mudstone |
C | Clean sand |
D | Organic content poor shale |
E | Clean coal |
F | Black shale |
Question 23 |
A | The Cl- ion diffuse because it has a stronger charge (attraction) than Na+. |
B | The Na+ ion diffuse because it has a stronger charge (attraction) than Cl-. |
C | The Na+ ion diffuse because Cl- attracts more water molecules. |
D | The Cl- ion diffuse because Na+ attracts more water molecules. |
E | The Na+ ion diffuse because it is much smaller in size than Cl-. |
F | The Cl- ion diffuse because it is much smaller in size than Na+. |
Question 24 |
A | Fractures formed due to drilling itself (non-natural fractures). |
B | Porous formations filled with oil or gas. |
C | Porous formations filled with water. |
D | High vibrations caused by drilling tools. |
Question 25 |
A | clean clay |
B | clean sandstones |
C | clean shale |
D | clean limestones |
E | clean coal |
Question 26 |
A | Gamma ray logs |
B | Spontaneous potential logs |
C | Density logs Hint: Nope, that's an indicator of porosity. |
D | Neutron logs |
E | Caliper logs |
Question 27 |
A | Mudcake itself surrounding the borehole. |
B | Lithostatic and hydrostatic pressure of the formation. |
C | Hydrostatic pressure of the formation. |
D | Thin mud film between the casing and the formation. |
E | Lithostatic pressure of the formation. |
Question 28 |
A | Improved drill bits. |
B | Improved logging tools. |
C | Improved cost efficiency (low cost). |
D | Improved logistics due to smaller equipment. |
E | Improved speeds of drilling. |
Question 29 |
A | To prevent mud filtrate from reaching inner parts of the formation of interest. |
B | To allow cutting to be transported to the surface. |
C | To increase the speed of the drilling by applying pressure to the drill bit. |
D | To balance the lithostatic pressure of the formation to prevent borehole collapses. |
E | To balance the hydrostatic pressure of the formation to prevent borehole collapses. |
Question 30 |
A | About 10 hours |
B | About a day |
C | About 2 years |
D | About 15 minutes |
E | About 4 hours |
Question 31 |
A | The invaded zone is larger in high porosity and permeability formations because faster flow result in slow build up of mudcake. |
B | Larger invaded zones provides the best resolutions of LWD logs because it allow the waves/signals to be penetrated deep into the formation. |
C | The mid invasion is enhanced by the fast build up of mudcake. |
D | The invaded zone is larger in low porosity and permeability formations because slower flow result in slow build up of mudcake. |
Question 32 |
A | As neutron density. |
B | As fluid density. |
C | As a difference between bulk and fluid density. |
D | As matrix density. |
E | As bulk density. |
Question 33 |
A | Water-based mud because it the most effective way to reduce the environmental impact. |
B | Oil-based mud because oils do not react with evaporates and the mud can be formulated to not to react with subsurface formations. |
C | Synthetic-based mud because the mud can be engineered to be inactive with the evaporate formations and reduce the environmental impact. |
D | All-oil based mud because it is the cheapest and can overcome the environmental cleanup costs. |
Question 34 |
A | Dissolution of early diagenetic cements. |
B | Break up of mineral compounds causing in situ porosity. |
C | Dissolution of grains at the grain to grain contact boundaries. |
D | Fractures of cements and minerals. |
Question 35 |
A | Spontaneous potential tools |
B | Neutron tools |
C | Gamma ray tools |
D | Caliper tools |
E | Density tools |
Question 36 |
(START) Dirty/used mud return to...
I. Distiller
II. Mud storage and settling tubs
III. Annulus spit out
IV. Desander
V. Shale shaker
VI. Mud pumps
A | II --> V --> I --> III --> VI --> V |
B | I --> V --> IV --> II --> VI --> III |
C | I --> V --> VI --> II --> IV --> III |
D | III --> V --> I --> II --> VI --> V |
E | I --> III --> VI --> IV --> V --> II |
F | V --> IV --> I --> II --> VI --> III |
Question 37 |
A | Coal; |
B | Highly radioactive formation; |
C | Shale; |
D | Very thin formation; |
E | Highly non-radio active formation; |
Question 38 |
A | ~ 55 o C |
B | ~ 43 o C |
C | ~ 45 o C |
D | ~ 65 o C |
E | ~ 49 o C |
Question 39 |
A | high natural radiation levels |
B | sudden increase in density |
C | gradual increase in density |
D | gas effect |
Question 40 |
A | Outside of the borehole; in the data collection truck. |
B | In the bottom hole assembly |
C | Inside the equipment pads. |
D | In the logging equipment casing. |
E | In the electronics bay. |
Question 41 |
A | Lower porosity loss in clay sequence compared to sandstone and shale due to clay being very dry in nature. |
B | Rapid loss of porosity within the sandstone sequence due to sandstone having higher permeability. |
C | Lower rate of porosity loss within the shale sequence due to tightly packed ionic bonds in shale. |
D | No porosity loss within shale sequence due to shale being already compacted by the time of burial. |
E | Increased rate of friction between clay particles due to overburden pressure. |
Question 42 |
A | ...a very low negative response. |
B | ...a response close to the calibrated zero position. |
C | ...no response at all (at zero level). |
D | ...a very high positive response. |
Question 43 |
Depth of Investigation: 15 -25 cm
Resolution: 50 cm
-Very high readings when shales or coals detected
A | Caliper log |
B | Neutron log |
C | Spontaneous Potential log |
D | Gamma Ray or Special Gamma Ray long |
E | Density log |
Question 44 |
A | ...the radioactivity of the formations are much higher. |
B | ...the distance between formations are lower. |
C | ...the contrast between the nearby formations and the resolved formation is higher. |
D | ...the porosity and permeability of formations are higher. |
E | ...the depth of investigation is much higher than expected hence increasing the vertical minimum bed resolution. |
Question 45 |
A | As saline solutions. |
B | As basic solutions. |
C | As a part of hydrous minerals. |
D | In the chemical structures of clay. |
E | Within water molecules. |
← |
List |
→ |
1 | 2 | 3 | 4 | 5 |
6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 |
31 | 32 | 33 | 34 | 35 |
36 | 37 | 38 | 39 | 40 |
41 | 42 | 43 | 44 | 45 |
End |
Credits: Based on the excellent class notes provided by, Dr. Rudi Meyer during Fall 2014.
FAQ | Report an Error
If you are a company or an organization willing to donate copies of well logs, please contact me. I really appreciate your contributions.
Type of tool |
DOI | Resolution | Used for… | Processes | Notes |
Caliper | NA | NA | -Borehole size and shape |
Spring loaded arms |
2 arm = diameter 4 arm = shape, orientation |
Gamma Ray |
10 – 15 cm | ~40 cm | -Lithology(vol. Shale/Sand often due to high K), geosteering, facies, depth control |
-Photoelectric effect (dom) -Compton scattering -Pair production -Scintillation counter + photomultiplier |
High (right kick): -Shale line -Organic content -K-Feldspars Low (left kick): -Clean sand -Carbonates -Clean coals |
Spectral Gamma Ray |
-Radioactive anomalies -Clay types -Volume of shale(clay) |
-Same as GR, but much better/larger scintillator | |||
Density & Photoelectric Factor |
< 10 cm | 11 – 40 cm | -Porosity, general lithology, min ids | ||
Neutron | 15 – 25 cm | ~50 cm | -Fluid, porosity, density, cross-over gas effect -Meassures porosity; used for calulating density |
Hydrogen | High (left kick): -Shales and coals Low (right kick): -Gas breaing fm./rocks Use Dphi & Nphi chart *Decreased with increased permeability |
Spontaneous Potential |
Depends | Depends | -Permeability(even small), lithology, facies, shale volume(not so much) |
Natural potential differences between fms. caused by: -Diffusion -Mambrane or shale potential |
Important: -Salinity of drilling fluid to fm. -Conductive drilling fluid -Constrasting permeability in adj. beds -Surface electrode(earth) No absolute scale(relatove +/-) Positive kick (relative): -Clean sand or sand stone, shaly sand Negative kick (relative): -Shale *Decreased with increased permeability |